На этом изображении показан пример кристалла сульфида железа, выращенного в лаборатории Университета Миннесоты до чрезвычайно высокой чистоты с использованием метода, называемого химическим переносом паров. Обратите внимание на «золотистый» блеск, характерный для пирита или дурацкого золота. Предоставлено: Университет Миннесоты.
В новом революционном исследовании ученые и инженеры из Университета Миннесоты электрически превратили обильный и дешевый немагнитный сульфид железа, также известный как «золото дураков» или пирит, в магнитный материал.
Это первый раз, когда ученые электрически преобразовали полностью немагнитный материал в магнитный, и это может стать первым шагом в создании ценных новых магнитных материалов для более энергоэффективных устройств памяти компьютера. Исследование было опубликовано в журнале Science Advances 29 июля.
«Большинство людей, разбирающихся в магнетизме, вероятно, сказали бы, что невозможно электрически преобразовать немагнитный материал в магнитный. Однако, когда мы посмотрели немного глубже, мы увидели потенциальный путь и осуществили его», – сказал Крис Лейтон, ведущий автор исследования и заслуженный профессор Университета Макнайта Миннесотского университета на факультете химической инженерии и материаловедения.
Лейтон и его коллеги уже более десяти лет изучают сульфид железа, или «золото дураков», на предмет возможного использования в солнечных элементах. В частности, сера является очень распространенным и недорогим побочным продуктом нефтедобычи. К сожалению, ученые и инженеры не нашли способ сделать материал достаточно эффективным, чтобы реализовать недорогие солнечные элементы, доступные на Земле.
«Мы действительно вернулись к материалу сульфида железа, чтобы попытаться выяснить основные препятствия на пути к дешевым, нетоксичным солнечным элементам», – сказал Лейтон. «Тем временем моя группа также работала в развивающейся области магнитоионики, где мы пытаемся использовать электрические напряжения для управления магнитными свойствами материалов для потенциальных применений в магнитных устройствах хранения данных. В какой-то момент мы поняли, что должны объединить эти два направления исследований, и это окупилось».
Лейтон сказал, что их цель состояла в том, чтобы управлять магнитными свойствами материалов с помощью одного напряжения и очень небольшого электрического тока, что важно для повышения энергоэффективности магнитных устройств. На сегодняшний день прогресс включает включение и выключение ферромагнетизма, наиболее технологически важной формы магнетизма, в других типах магнитных материалов. Сульфид железа, однако, давал возможность электрически индуцировать ферромагнетизм в полностью немагнитном материале.
В исследовании ученые использовали метод, называемый электролитным затвором. Они взяли немагнитный сульфид железа и поместили его в устройство, контактирующее с ионным раствором или электролитом, сравнимым с Gatorade. Затем они приложили всего 1 вольт (меньше напряжения, чем у бытовой батареи), переместили положительно заряженные молекулы к границе раздела между электролитом и сульфидом железа и навели магнетизм. Важно отметить, что они смогли отключить напряжение и вернуть материал в немагнитное состояние, что означает, что они могут обратимо включать и выключать магнетизм.
«Мы были очень удивлены, что это сработало, – сказал Лейтон. «Применяя напряжение, мы, по сути, вливаем электроны в материал. Оказывается, что если вы получите достаточно высокую концентрацию электронов, материал самопроизвольно станет ферромагнитным. Это имеет большой потенциал. Сделав это с сульфидом железа, мы предполагаем, что сможем сделать это и с другими материалами».
Лейтон сказал, что они никогда бы не подумали, что попробуют этот подход, если бы не исследования его команды по изучению сульфида железа для солнечных батарей и работы по магнитоионике.
«Это было идеальное совпадение двух областей исследований», – сказал он.
Следующим шагом ученых будет продолжение исследований по воспроизведению процесса при более высоких температурах, что, по предварительным данным группы, безусловно, возможно. Они также надеются опробовать процесс с другими материалами и продемонстрировать потенциал реальных устройств.
Читайте также: Астрономы нашли планету, где падает дождь из железа
Триллионы микроорганизмов, обитающих в желудочно-кишечном тракте человека, - микробиом кишечника - оказывают мощное влияние на… Читать далее
В реальных числовых данных вероятность того, что первая цифра любого числа будет равна 1, составляет… Читать далее
Белки, витамины и минеральные вещества в мясе делают его наиболее подходящей пищей для оптимального физического… Читать далее
Группа исследователей из Китая впервые сообщила о рождении живой обезьяны, содержащей высокую долю клеток, полученных… Читать далее
При исследовании гранул из переработанного пластика, собранных в 13 странах, ученые обнаружили сотни токсичных химических… Читать далее
Паук-серебрянка, или водяной паук(лат. Argyroneta aquatica) - уникальный воздуходышащий паук, который практически всю жизнь живет… Читать далее