Нейробиология(мозг)

Учёные заставили спинной мозг взрослого млекопитающего регенерировать без трансплантации донорских клеток

Лайнуть/Поделиться

Возможно, благодаря подобным научным исследованиям в будущем нам удастся полностью восстанавливать повреждения в центральной нервной системе у людей.

Некоторые наши ткани, например, кожа, достаточно хорошо восстанавливаются после травм. Травмы центральной нервной системы (ЦНС), в частности, спинного мозга, напротив, часто приводят к тяжёлым функциональным нарушениям, зачастую не поддающимся лечению. Почему так происходит? Способность ткани к регенерации во многом зависит от способности составляющих её клеток замещать клетки, утраченные в результате травмы. Кожа или кишечник замечательно справляются с этой задачей, активируя тканеспецифичные стволовые клетки. В распоряжении ЦНС тоже есть свои стволовые клетки, и они тоже активируются в результате травмы. Однако вклад активируемых травмой нервных стволовых клеток в замещение утерянных нейронов и олигодендроцитов недостаточен для регенерации: преимущественно они продуцируют рубцеобразующие астроциты. Возможно ли перенастроить стволовые клетки ЦНС таким образом, чтобы заставить их дифференцироваться в клетки нужного типа? Нейробиологи из Каролинского института (Швеция) и Санкт-Петербургского государственного университета решили попробовать.

Нейробиологи хорошо знают, что фраза «нервные клетки не восстанавливаются» — всего лишь наивное предостережение от излишних переживаний, которое имеет мало общего с научными фактами.

В мозге даже взрослого человека нейрогенез, то есть образование новых нейронов, все-таки происходит. Этой способности хватает, чтобы поддерживать когнитивные функции в порядке, но не чтобы, например, восстановить спинной мозг водителя, повредившего позвоночник в автомобильной аварии. После такой травмы в нервной ткани появляется «глиальный» рубец — и прежние функции спинного мозга в полном объеме вернуть уже не получается.

Все же группа исследователей под руководством пионера в области исследований стволовых клеток мозга профессора Йонаса Фризена смогла сделать шаг к тому, чтобы научиться восстанавливать поврежденные ткани центральной нервной системы внутри живого организма. Эксперименты проводились на мышах с использованием трансгенных технологий.

Проанализировав хроматин и РНК отдельных стволовых клеток из популяции эпендимальных клеток, учёные обнаружили, что генетическая программа генерации олигодендроцитов доступна в них, но латентна, так как гены олигодендроцитов не экспрессируются. В частности, исследователи выяснили, что большая часть сайтов связывания для OLIG2, транскрипционного фактора, обычно инициирующего олигодендрогенез, имеет базальную доступность, несмотря на то, что OLIG2 и его ключевые целевые гены не экспрессируются во взрослых эпендимальных клетках. Результаты работы в статье, опубликованной журнале Science 2 октября.

Схема строения олигодендроцита. Олигодендроциты играют ключевую роль в миелинизации аксонов. Их главная функция — предоставлять помощь и изоляцию аксонам нейронов, находящихся в центральной нервной системе позвоночных животных. Автор иллюстрации: Holly Fischer

Чтобы выяснить, возможно ли использовать эту латентную доступность для того, чтобы заставить стволовые клетки с большей, чем обычно, активностью продуцировать олигодендроциты, экспериментаторы генетически сконструировали специальных мышей, у которых во взрослых эпендимальных клетках активно экспрессируется OLIG2.

После нанесения этим подопытным мышам травм с повреждением спинного мозга в их эпендимальных клетках включалась программа превращения в олигодендроциты, которые затем мигрировали в места демиелинизации аксонов и ремиелинизировали их. Используя оптогенетику, учёные установили, что в итоге у мышей восстанавливалась нормальная аксонная проводимость.

Таким образом, удалось установить, что взрослая ЦНС млекопитающих обладает серьёзным потенциалом регенерации за счёт собственных клеток, без пересадки донорских стволовых клеток — надо лишь активировать соответствующую генетическую программу. Как минимум, это работает с олигодентроцитами и миелинизацией у мышей.

«Публикация в Science — это хороший пример научного международного сотрудничества. Возможность работать и думать вместе позволяет подойти к решению проблемы шире, использовать мультидисциплинарный подход и достичь результатов мирового уровня, которые невозможно было бы получить в одной лаборатории. В Институте трансляционной биомедицины СПбГУ уже несколько лет ведутся работы как по поиску новых методов восстановления функций спинного и головного мозга, так и по разработке новых методов перепрограммирования и дифференцировки клеток. Уникальные генетические технологии, разработанные в рамках данной работы, придадут новый импульс этим направлениям и позволят специалистам института по‑новому решать ключевые проблемы современной биомедицины», — считает директор Института трансляционной биомедицины СПбГУ, научный руководитель Клиники высоких медицинских технологий имени Н. И. Пирогова СПбГУ профессор Рауль Гайнетдинов.

DOI: 10.1126/science.abb8795 | Источники: XX2ВЕК, Wiki, SPBU


Читайте также: Активация болевых рецепторов ускорила заживление ран. Они затянулись без шрамов

Редакция

Недавние публикации

Костный мозг черепа расширяется на протяжении всей жизни и практически не стареет

Рост сосудов в костном мозге черепа на протяжении всей жизни приводит к увеличению выработки клеток… Читать далее

05/01/2025

Перетягивание каната в мозге: выбор между классическим и оперантным обучением

Исследование Тель-Авивского университета может изменить наше понимание того, как люди учатся и формируют память, особенно… Читать далее

27/12/2024

Сайты, расширяющие кругозор, буквально

Эти сайты расширят ту область, которую вы можете охватить своим взглядом в пространстве-временном континууме. Линейка… Читать далее

25/12/2024

Терпение – не добродетель, а стратегия преодоления жизненных задержек

Новое исследование ставит под сомнение вековое представление о терпении как о моральной добродетели, показывая, что… Читать далее

21/12/2024

Анализ бега австралопитека: Как мы в разы увеличили скорость бега за 3 млн. лет эволюции

3D-модели Australopithecus afarensis указывают на мышечные адаптации, которые сделали современных людей лучшими бегунами. Древние родственники… Читать далее

20/12/2024

Рои роботов, схожие на муравьев, поднимают тяжелые предметы и перепрыгивают через препятствия

Ученые из Южной Кореи разработали рой крошечных магнитных роботов, которые работают вместе, как муравьи, и… Читать далее

19/12/2024